Pembahasan Soal vector Kelas x.Selamat siang semuanya para blogger.yah demi kemajuan nanak generasi para belajar indonesia kalai ini planet prestasi mencoba mengupdate postingan tentang pembahasan soal vector kelas x.kali saya akan mencoba membahas perkalain vector arah resultan dan besar resultan vector.
Soal No. 1
Diberikan dua buah vektor gaya yang sama besar masing-masing vektor besarnya adalah 10 Newton seperti gambar berikut.
Jika sudut yang terbentuk antara kedua vektor adalah 60°, tentukan nilai resultan kedua vektor!
Pembahasan
Resultan untuk dua buah vektor yang telah diketahui sudutnya
Soal No. 2 Dua buah vektor kecepatan P dan Q masing-masing besarnya 40 m/s dan 20 m/s membentuk sudut 60°.
Tentukan selisih kedua vektor tersebut!
Pembahasan Menentukan selisih dua buah vektor yang diketahui sudutnya:
Soal No. 3 Dua buah vektor gaya masing – masing 8 N dan 4 N saling mengapit sudut 120°. Tentukan besar resultan kedua vektor tersebut!
Pembahasan Data:
F
1 = 8 N
F
2 = 4 N
α = 120°
R = ........
Catatan rumus:
cos (180° − α) = − cos α Sehingga untuk nilai cos 120°:
cos 120° = cos (180° − 60°) = − cos 60° = −
1/
2 Soal No. 4 Perhatikan gambar berikut!
Jika satu kotak mewakili 10 Newton, tentukan resultan antara kedua vektor!
Cari jumlah resultan pada sumbu x dan sumbu y, cukup dengan menghitung kotak dari masing-masing vektor, F1 adalah 30 ke kanan, 40 ke atas, sementara F2 adalah 50 ke kanan, 20 ke atas, kemudian masukkan rumus resultan:
Soal No. 5
Diberikan 3 buah vektor F1=10 N, F2 =25 N dan F3=15 N seperti gambar berikut.
Tentukan:
a. Resultan ketiga vektor
b. Arah resultan terhadap sumbu X
[Sin 37° = (3/5), Sin 53° = (4/5)]
[Cos 37° = (4/5), Cos 53° = (3/5)]
Pembahasan
a. Ikuti langkah-langkah berikut:
1. Uraikan semua vektor ke sumbu x dan sumbu y (kecuali vektor yang sudah lurus pada sumbu x atau y seperti F2). Lihat gambar di bawah!
2. Cari jumlah vektor pada sumbu x ( kanan +, kiri -)
3. Cari jumlah vektor pada sumbu y (atas +, bawah -)
4. Masukkan rumus resultan
Vektor yang dalam perhitungan selanjutnya tidak digunakan lagi karena sudah diuraikan tadi, dihapus saja, agar kelihatan lebih bersih, sisanya seperti ini:
Jumlah komponen vektor-vektor pada sumbu x dan y :
b. Mencari sudut yang terbentuk antara resultan vektor R dengan sumbu x
tan θ =
ΣFy /
ΣFx tan θ =
−7/
−1 = 7
θ = arc. tan 7 = 81,87°
Thanks to PCP
http://journalputrika.blogspot.com atas koreksinya :-)
Soal No. 6 Ditentukan 2 buah vektor F yang sama besarnya. Bila perbandingan antara besar jumlah dan besar selisih kedua vektor sama dengan √3, tentukan besar sudut yang dibentuk oleh kedua vektor! (Sumber Soal : SPMB)
Pembahasan
Jumlah dan selisih kedua vektor masing-masing adalah:
Perbandingan jumlah dan selisihnya adalah √3 sehingga:
Kuadratkan ruas kiri dan kanan
Kali silang :
Soal No. 7 Sebuah perahu menyeberangi sungai yang lebarnya 180 m dan kecepatan airnya 4 m/s. Bila perahu diarahkan menyilang tegak lurus dengan kecepatan 3 m/s, tentukan panjang lintasan yang ditempuh perahu hingga sampai ke seberang sungai! (Sumber Soal : UMPTN)
Asumsikan bahwa perahu bergerak lurus beraturan menempuh lintasan AD dan resultan kecepatan perahu dan air adalah 5 m/s (gunakan aturan Phytagoras). Dengan membandingkan sisi-sisi segitiga ABC dan ADE :
Tips
"Untuk dua buah vektor dengan besar yang sama dan membentuk sudut 120o maka resultan kedua vektor besarnya akan sama dengan besar salah satu vektor"
Berikut ilustrasinya:
Dua buah vektor dengan besar yang sama yaitu 10 N membentuk sudut 120o maka nilai resultan kedua vektor juga 10 N.
Berikut contoh soal diambil dari soal EBTANAS (UN tempo dulu, zaman kakak-kakak kita) tahun 2000.
Perhatikan gambar gaya-gaya di bawah ini!
Besar resultan ketiga gaya tersebut adalah....
A. 2,0 N
B. 2 √3 N
C. 3,0 N
D. 3 √3 N
E. 4√3 N
Pada soal di atas 2 buah vektor (gaya) 3 N membentuk sudut 120
o, sehingga resultan kedua gaya juga 3 N. Resultan kedua gaya ini akan segaris dengan gaya 6 N, namun berlawanan arah. Sehingga dengan mudah soal ini bisa dijawab resultan ketiga gaya adalah 6 N dikurangi 3 N hasilnya adalah 3 N.
Soal No. 8Diberikan 3 buah vektor :
a = 2i + 3j satuan
b = 4i + 5j satuan
c = 6i + 7j satuan
Tentukan besar resultan ketiga vektor, dan kemiringan sudut antara resultan dan sumbu X
Data:
Untuk lebih jelas berikut ilustrasinya:
12 pada sumbu x
15 pada sumbu y
Arahnya adalah sudut θ yang bisa dicari dari sin θ, cos θ maupun tan θ. Jika dicari dari tan θ maka yang dibandingkan nilai pada sumbu y dengan nilai pada sumbu x. Jika dicari dari sin θ yang dibandingkan nilai pada sumbu y dengan nilai resultan R, jika digunakan cos θ bandingkan nilai pada sumbu x dengan nilai resultan R.
Soal No. 9 Diberikan 3 buah vektor
a,
b,
c seperti gambar di bawah.
Dengan metode poligon tunjukkan :
(i)
d =
a +
b +
c (ii)
d =
a +
b −
c (iii)
d =
a −
b +
c Pembahasan
Dengan metode poligon :
(i)
d =
a +
b +
c (ii)
d =
a +
b −
c (iii)
d =
a −
b +
c Soal No. 10 Diberikan dua buah vektor masing-masing vektor dan besarnya adalah
A = 8 satuan,
B = 10 satuan. Kedua vektor ini membentuk sudut 37°. Tentukan hasil dari:
a)
A⋅ B b)
A ×
BPembahasan a)
A⋅ B adalah perkalian titik (dot) antara vektor A dan vektor B
Untuk perkalian titik berlaku
A⋅ B =
A B cos θ
Sehingga
A⋅ B =
A B cos 37° = (8)(10)(0,8) = 64 satuan
b)
A ×
B adalah perkalian silang (cross) vektor A dan vektor B
Untuk perkalian silang berlaku
A ×
B =
A B sin θ
Sehingga
A ×
B =
A B sin 37° = (8)(10)(0,6) = 48 satuan
Soal No. 11Sebuah gaya
F = (2
i + 3
j) N melakukan usaha dengan titik tangkapnya berpindah menurut r = (4
i + a
j) m dan vektor
i dan
j berturut-turut adalah vektor satuan yang searah dengan sumbu x dan sumbu y pada koordinat kartesian. Bila usaha itu bernilai 26 J, maka nilai a sama dengan...
A. 5
B. 6
C. 7
D. 8
E. 12
Sumber: Soal UMPTN Tahun 1991
Pembahasan Soal ini adalah soal penerapan perkalian titik (
dot product ) antara vektor gaya
F dan vektor perpindahan
r dengan kedua vektor dalam bentuk i dan j atau
vektor satuan. Besaran yang dihasilkan nantinya adalah skalar (usaha termasuk besaran skalar, hanya memiliki besar, tanpa arah). Usaha dilambangkan dengan W dari kata
work.
W =
F ⋅ r 26 = (2i + 3j)⋅ (4i + aj)
Cara perkalian titik dua vektor dalam bentuk i,j adalah yang i kalikan i, yang j kalikan j, hingga seperti berikut
26 = 8 + 3a
3a = 26 − 8
a = 18/3 = 6
i dan j nya jadi hilang karena i kali i atau j kali j hasilnya adalah satu.
Bagaimana cara perkalian silang dua vektor dalam bentuk i dan j ? ntar kita tambahkan,...IA
Soal No. 12 Diberikan dua buah vektor masing-masing:
A = 4
i + 3
j − 2
k B = 7
i + 2
j + 5
k Tentukan hasil dari A × B
Pembahasan Perkalian silang,
A × B Cara pertama: Misal :
A = (A
x i + A
y j + A
z k) dan
B = (B
x i + B
y j + B
z k)
maka :
A × B = (Ay Bz − Az By) i + (Az Bx − Ax Bz) j + (Ax By − Ay Bx) k |
↑ Rumus Perkalian Silang Dua Vektor (
cross product ) dalam i, j, k
Data :
A = 4
i + 3
j − 2
k B = 7
i + 2
j + 5
k Ax = 4 Ay = 3 Az = − 2 | Bx = 7 By = 2 Bz = 5 |
maka
A × B = (A
y B
z − A
z B
y)
i + (A
z B
x − A
x B
z)
j + (A
x B
y − A
y B
x)
k A × B = [(3)(5) − (−2)(2)]
i + [(−2)(7) − (4)(5)]
j + [(4)(2) − (3)(7)]
k A × B = (15 + 4)
i + (−14 − 20)
j + (8 − 21)
k A × B = 19
i −34
j − 13
k Lumayan repot kalau mau dihafal rumus perkalian di atas, alternatifnya dengan cara yang kedua,
Cara Kedua: A = 4
i + 3
j − 2
k B = 7
i + 2
j + 5
k Susun dua vektor di atas hingga seperti bentuk berikut:
Untuk mempermudah perkalian, tambahkan dua kolom di sebelah kanan susunan yang telah dibuat tadi hingga seperti berikut:
Beri tanda plus dan minus, ikuti contoh berikut:
Kalikan menyilang ke bawah terlebih dahulu dengan memperhatikan tanda plus minus yang telah dibuat, lanjutkan dengan menyilang ke atas,
A × B = (3)(5)
i + (−2)(7)
j + (4)(2)
k − (7)(3)
k − (2)(−2)
i − (5)(4)
j A × B = 15
i −14
j + 8
k − 21
k + 4
i − 20
j A × B = (15 + 4)
i + (− 14 − 20)
j + (8 − 21)
k A × B = 19
i − 34
j − 13
k Demikian dulu yah pembahasan tentang Pembahasan Soal Vector kelas x.semoga dapat di mengerti dan mudahan pahami dan tentunya dapat membantu siswa-siswi sekalian.salam prestasi dari planet prestas